
Table S1. Immune and/or Host Defense Functions of single nucleotide polymorphisms associated with 

depression based on meta-analyses of genome-wide association (GWAS) studies 

 

Liu et al. Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol 

Psychiatry 2011; 16: 2-6 
(a)

 

Gene ID Gene Name Immune Function of Gene 

CACNA1C calcium channel, 
voltage-dependent, L 
type, alpha 1C 
subunit 

See article text for a discussion of immune and host defense functions of CACNA1C 

 

McMahon et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders 

on 3p21.1. Nat Genetics 2010; 4: 128-31 
(a)

 

Gene ID Gene Name Immune Function of Gene 

PBRM1 polybromo 1 aka 
BRG1-associated 
factor 180 (BAF180) 

PBRM1 codes for a protein  component (BRG1-associated factor 180 [BAF 180]) of the 
SWI/SNF chromatin remodeling complex, which is crucial for activation and proliferation of T 
cells in response to antigen stimulation,1 and which regulates induction and temporal 
sequencing of proinflammatory cytokines in response to an immune challenge,2 as well as 
antigen receptor assembly (i.e. VDJ recombination) in B cell precursors;3 following bacterial 
TLR stimulation, the BRG1/BRM subunits of the SWI/SNF complex are consistently required 
for the activation of secondary response genes and primary response genes induced with 
delayed kinetics within macrophages;4 BRG1 and other BAF elements within the SWI/SNF 
complex has been identified as activators of transcription within the nuclear interactome for 
the HIV-1 virulence factor “Trans-Activator of Transcription” (Tat),5-7 and the SWI/SNF 
complex more generally regulates retroviral gene integration into, and expression in, infected 
host cells,8-11 and contributes to viral replication;12 PBRM1 (BAF 180) is required for 
expression of the IFITM1 gene in response to interferon signaling,13 and IFITM1 has been 
shown to restrict entry of a range of viruses, including HIV and SARS, into host cells,14,15 



consistent with fact that BAF complex within SWI/SNF is essential for IFN-target-gene 
dependent cellular antiviral activities;16 BRG1 is essential for IFN-gamma induction of CIITA, 
the master regulator of major histocompatibility complex (MHC) class II expression,17 and a 
switch from hBrm to BRG1 regulation of expression is an indicator of genes that are 
responsive to IFN-gamma signaling;18 BRG1 contributes to MHC I immunity by upregulating 
enhancer A;19 knock-down of BRG-1 activity blocks human papillomavirus E-2 driven 
transcriptional activation and DNA replication;20 mice that constitutively express the SWI/SNF 
complex are highly susceptible to experimentally induced autoimmune encephalomyelitis;1 

GNL3 guanine nucleotide 
binding protein-like 3 

GNL3 codes for a GTPase nucleostemin that is involved in stem cell proliferation and that 
upregulates the transcription factor CDX2,21 which is a homeodomain transcription factor 
specific to the intestinal epithelium crucial for pathogenic E. coli to induce the di/tripeptide 
transporter PepT1 in gut and also to activate NFkB and MAPK leading to production of IL-8.22 
The chemokine CCL25 which plays an important role in recruiting lymphocytes to the 
intestinal epithelium is enhanced by CDX2, which regulates CDDL25 transcription.23 CCL25, 
in turn, is believed to play a role in the development of T cells,24 and is chemotactic for 
thymocytes, macrophages and dendritic cells.25,26 

 

Shyn et al. Novel loci for major depression identified by genome-wide association study of Sequenced 
Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Mol Psychiatry 2011; 16: 202-

15 
(b)

 

Gene ID Gene Name Immune Function of Gene 

ATP6V1B2 ATPase, H+ 
transporting, 
lysosomal 56/58kDa, 
V1 subunit B2 

ATP6V1B2 is a component of vacuolar ATPase (V-ATPase) that is involved in cytoskeletal 
functioning necessary for T cell movement and ability to form functional immunological 
synapses with antigen presenting cells;27 V-ATPase is important for host defense against M. 
tuberculosis by contributing to phagosomal maturation/acidification;28 via secretion of SidK L. 
pneumophila (cause of Legionnaires’ disease) inhibits V-ATPase allowing for vacuolar 
survival and enhanced virulence;29 V-ATPase contributes to early intracellular survival 
strategy of F. Tularensis;30 V-ATPase is a target for P. aeruginosa produced pyocyanin, which 
kills competing microbes and mammalian cells during pseudomonal infection;31 by 
contributing to endosomal acidification V-ATPases promote influenza A virus infection,32 
conversely V-ATPase inhibition has been shown to be protective against highly virulent 



influenza strains;33 V-ATPase inhibition inhibits rhinovirus infection of airway epithelial cells 
via blocking viral RNA entry into endosomes and by reducing ICAM-1 expression in epithelial 
cells.34 during pregnancy and in tumorgenesis, a2NTD, which is cleaved from the a2 isoform 
of V-ATPase upregulates pro- and anti-inflammatory mediators including IL-1b and IL-10;35-38 
V-ATPase promotes fetal implantation and survival by modulating cytokine network at 
implantation site and attenuating maternal immune response against fetal trophoblast cells;38  

SP4 Specificity protein 4 
transcription factor 

SP4 activates the HIV-1 LTR promoter,39 possibly enhancing HIV-1 Tat-mediated 
transactivation of the viral promoter. Consistent with these effects an intergenic SNP in SP4  
(rs6951646) may confer vulnerability for  mother-to-child transmission of HIV;40 Curcumin 
shown to inhibit NFκB signaling in part via downregulation of SP4;41 COX-2 inhibitors inhibit 
VEGF gene expression via activation of proteasome-dependent degradation of SP4;42 

GRM7 glutamate receptor, 
metabotropic 7 

Mice with targeted deletion of mGluR7 show enhanced sensitivity to glucocorticoid inhibitory 
feedback on the HPA axis,43 which would be expected to reduce inflammatory signaling. This 
raises the possibility that mGluR7 signaling may support proinflammatory activity 

AK294384 similar to Muskelin 1 
(MKLN1) 

Muskelin gene expression is reduced in neutrophils from patients with generalized aggressive 
peridontitis, a proinflammatory condition characterized by increased neutrophil IL-1b gene 
expression;44 muskelin appears to be an isoform-specific anchoring protein for the 
prostaglandin EP3 receptor45 

LY86 lymphocyte antigen 
86 aka MD-1 

LY86 codes for myeloid differentiation protein MD-1, which has been recently shown to bind 
LPS;46 MD-1-null mice show impairment in LPS-induced B-cell proliferation, antibody 
production, and B7.2/CD86 up-regulation;47 inhibition of MD-1 increases expression of IL-4, 
IL-10 and TGF-beta and decreases IL-2, IFN-gamma and TNF-alpha expression with 
resultant improvement in allograft and fetal graft survival;48-50 dorsal root ganglion neurons 
express the unusual combination of CD-14, TLR4, and MD-1. Blocking antibodies against 
TLR4 and MD-1 prevents induction of nociceptin/orphanin FQ (N/OFQ), an opioid-related 
peptide that is markedly up-regulated in sensory neurons in vivo following peripheral 
inflammation that plays a key role in pain physiology;51 blockade of MD1 functional activity in 
dendritic results in elevated Treg induction in response to allogeneic stimulation (in vivo or in 
vitro) in the presence of LPS;52 via linkage to CD14, MD-1 comprises a "danger receptor 
complex," and activation of this complex regulates dendritic cell surface expression of 
CD80/CD86, which signal T cells.53 



KSP37 aka 
FGFBP2 

killer-specific 
secretory protein of 
37 kDa aka fibroblast 
growth factor binding 
protein 2 

Within leukocytes, Ksp37 expression is limited to Th1-type CD4(+) T cells, effector CD8(+) T 
cells, gamma-delta T cells, and CD16(+) NK cells. Most of these Ksp37-expressing cells 
coexpress perforin, suggesting that Ksp37 is selectively and commonly expressed in the 
lymphocytes that have cytotoxic potential.54 

IGSF9B immunoglobulin 
superfamily, member 
9B 

No functional data available for IGSF9B, however likely immune and/or host defense 
relevance is suggested by the fact that members of the immunoglobulin superfamily include 
cell surface antigen receptors, co-receptors and co-stimulatory molecules of the immune 
system, molecules involved in antigen presentation to lymphocytes, cell adhesion molecules, 
certain cytokine receptors and intracellular muscle proteins 

 

Muglia et al. Genome-wide association study of recurrent major depressive disorder in two European case-

control cohorts. Mol Psychiatry 2010; 15: 589-601 
(b)

 

Gene ID Gene Name Immune Function of Gene 

SMG7 smg-7 homolog, 
nonsense mediated 
mRNA decay factor 

No specific immune and/or host defense functions reported for SMG7; however SMG7, UPF1, 
SMG5 and SMG6 comprise the nonsense-mediated mRNA decay (NMD) pathway, a 
surveillance mechanism for eliminating mRNAs containing premature termination codons that 
is important in degrading retroviral DNA in eukaryotic cells;55

 Depletion of UPF1 by siRNA 
dramatically reduces steady-state HIV-1 RNA and pr55(Gag), and, conversely, 
overexpression of UPF1 leads to significant up-regulation of HIV-1 expression at the RNA and 
protein synthesis levels;56 

NFKB1 aka 

NFκBp50 

nuclear factor of 
kappa light 
polypeptide gene 
enhancer in B-cells 1 

A database too extensive for full inclusion in this table demonstrates that the transcription 
factor NF-κB has multiple immune effects relevant to innate and adaptive immunity, host 
defense and the development of inflammatory/autoimmune diseases (including cancer); with 
p50 central to innate immunity via the classical NF-κB pathway;57-66 Examples of p50 effects 
relevant to host defense include (but are not limited to):  

• Many bacterial pathogens (e.g. enteropathic E. coli) utilize a type III secretion system 
(T3SS) to inject effector proteins into host cells during infection that enhance virulence 
by degrading the p50, p65 and cRel subunits of NF-κB;67 



 

• M. tuberculosis promotes its own intracellular survival by inhibiting Th1 type immune 
responses via the ability of the bacterial protein PPE18 to block nuclear translocation 
of the p50 and p65 subunits of NF-κB as a result of PPE18 inducing SOCS3 masking 
the phosphorylation site of IκBα;68 
 

• Varicella-zoster virus enhances its replication in melanocytic skin cells by inhibiting I-
CAM producing in the center of skin lesions, in part by inhibiting TNF-alpha induced 
translocation of p50 to the nucleus;69 
 

• Upon rhinovirus exposure, beta-2 adrenergic receptor agonists reduces rhinovirus 
titers and RNA, cytokine concentrations, and susceptibility to rhinovirus infection 

inhibited the activation of nuclear factor kappa-B (NF-κB) proteins, including p50 and 
p65, in the nucleus while increasing cytosolic concentrations of the inhibitory kappa B-
alpha;70 
 

• Apoptosis is significantly reduced in the CNS of p50-null mice following reovirus 
infection, but massively increased in concert with uncontrolled reovirus replication in 
the heart, an effect associated with marked reductions in reovirus-induced IFN-beta 
mRNA in the heart and partially reversed by IFN-beta administration;71 
 

• Downregulation of NFKB1 expression during Dengue infection in children is likely 
protective given that increased NFKB1 expression correlates with increased incidence 
of hemorrhagic events and with a trend toward increases in multiple other life-
threatening complications;72 
 

• Increased NF-κB production in response to Y. Pestis reduces infectious severity and 
mortality in animal models;73 
 

• In the context of a number of infection by a number of viruses (e.g. HSV-1, HCMV), 
p50 appears to have conflicting effects on viral replication and spread, reducing these 
phenomena by stimulating apoptosis of infected cells while at the same time 
encouraging viral spread via herpes manipulation of the transcription factor for its own 
replicative purposes;74,75 
 

• NF-κB protects against Toxoplasma gondii encephalitis via stimulation of CD8+ T cells 
and IFN-gamma production;76 
 

• Polymorphisms in NFKB1 have been associated with acute respiratory distress 
syndrome,77,78 autoimmune and inflammatory diseases in Asian populations by meta-



analysis,79 and with both incidence and severity of inflammatory bowel disease in 
other populations in individual studies,80,81 and persistent viremia in HCV infection;82 

• NF-kappaB p50 subunit is protective during intestinal Entamoeba histolytica infection 
of the gut in animal models;83 

LOC654346 aka LGALS9C lectin, 
galactoside-binding, 
soluble, 9C 

LOC654346 codes for a protein identical, or highly similar, to galectin 9, which has 
widespread, highly complex, and partially paradoxical immune effects that in general appear 
to be anti-inflammatory via suppression of T1 and Th17 T cell immunity and enhancement of 
Treg;84-86 However, galectin-9 y binding to T cell Ig mucin-3 (Tim3) expressed on different 
cells, galectin-9 activates innate immune dendritic cells via a specific carbohydrate 
recognition domain (CRD), suggesting that it may enhance antigen presentation;87,88 via 
interaction with Tim3 expressed on T(H)1 cells, galectin-9, which is expressed by M. 
tuberculosis-infected macrophages, restricts intracellular bacterial growth. Tim3-galectin-9 
interaction accomplishes this by leading to macrophage activation with resultant bactericidal 
activity induced by caspase-1-dependent IL-1β secretion;89 galectin-9 has been shown to be 
an immunomodulator in the context of L. major infection. Galectin 9 recognizes L. major by 
binding to the L. major-specific polygalactosyl epitope and promotes interaction between L. 
major and macrophages;90 galectin-9 attenuates CD8(+) T cell immunity to herpes simplex 
virus infection via direct inhibition of TIM3(+) CD8(+) T cells and indirectly by enhancing 
Foxp3(+) Treg activity;91 galectin-9 is an eosinophil chemoattractant produced by activated T 
cells,92 but also demonstrates anti-allergic effects by blocking IgE-antigen complex 
formation,93 as well as an ability to inhibit contact hypersensitivity and psoriatic reactions;94 by 
attenuating Th1 responses galectin-9 inhibits autoimmune diabetes in NOD mice,95 and 
ameliorates arthritis in animal models via regulation of Fc gamma receptor expression on 
macrophages,96 as well as by suppressing the generation of Th17 cells and inducing Treg;85 
galectin-9 promotes NK cell-mediated anti-tumor activity by expanding macrophages with a 
unique plasmacytoid cell-like phenotype (PDCA-1 and B220);97 

NMNAT2 nicotinamide 
nucleotide 
adenylyltransferase 
2 

No specific immune and/or host defense functions reported. 

LAMC2 laminin, gamma 2 Gamma 2 laminin chain production is stimulated by TNF-alpha;98 In response to wounding, 
laminin gamma2 chains are processed to smaller sizes and function to promote epithelial 
sheet migration over the wound bed;99,100

 Pathogens that avidly bind laminin as a means of 



entering host cells thereby initiating infection include Aspergillus fumigates, Heliobacter pylori, 
Histoplasma capsulatum, Mycobacterium leprae, Paracoccidioides brasilienses, rotavirus, 
Streptococcus pyogenes, Treponema pallidum, Trypanosoma cruzi;101 During inflammatory 
processes the enzyme neutrophil elastase digests the gamma 2 laminin chain into fragments 
that are chemotactic for neutrophils.102 

UGT2A2 uridine 5'-diphospho 
glucuronosyltransfer
ase (UDP) 2 family, 
polypeptide A2 

Expressed primarily in nasal epithelium where it glucuronidates an array of inhaled 
substances.103 No known immune/host defense effects. 

UGT2A1 UDP 
glucuronosyltransfer
ase 2 family, 
polypeptide A1, 
complex locus 

No specific immune and/or host defense functions reported for UGT1A1; however, because 
UGT2A1 enhances bilirubin elimination by catalyzing its conjugation glucuronic acid,104 an 
anti-inflammatory effect might be expected, given that increased levels of bilirubin are 
associated with increased levels of proinflammatory cytokines;105 in animal models, increased 
bilirubin associated with impaired PMN phagocytosis of S. Aureus, suggesting that UGT21 
activity may enhance host defense against bacterial pathogens, as a result of reducing 
bilirubin levels;106 

ATG7 autophagy related 7 
homolog 

The autophagy degradation pathway is essential for eliminating intracellular pathogens, 
presenting endogenous antigens to immune cells and regulating T and B lymphocyte survival, 
proliferation and function107;108 knocking down ATG7 inhibits hepatitis C virus (HCV) growth 
via increased activity in interferon (IFN)-alpha and IFN-alpha-inducible protein 27 signaling 
pathways, as well as by increased caspase activation, polymerase cleavage and apoptosis of 
infected cells;109 ATG7 is essential for production of myeloid and lymphoid progenitor cells;110 

CUGBP1 CUG triplet repeat, 
RNA binding protein 
1 

CUGBP1 is a downstream effector of IFN-beta signaling in primary macrophages that is 
thought to play a pivotal role in innate immune responses that control acute HIV/SIV 
replication in the brain;111 CUGBP1 participates in acute phase response in liver following 
LPS exposure by inducing the low molecular weight CCAAT/Enhancer binding protein 
(C/EBP) beta isoform, liver-enriched transcriptional inhibitory protein (LIP);112 CUGBP1 
impairs stabilization of TNF-alpha mRNA transcripts;113  

NFE2L3 nuclear factor 
(erythroid-derived 2)-
like 3 

NFE2L3 modulates T cell development, based on finding that knockdown of the gene 
significantly increases development of T cell lymphoblastic lymphoma;114 NFE2L3 one of 20 
genes upregulated in human uterine microvascular endothelial cells following administration 



of IFN-gamma, other IFN-gamma induced genes include chemokines and antiviral factors;115 
NFE2L3 involved in the control of gene expression and inflammation during cutaneous wound 
repair;116  

 

Lewis et al. Genome-wide association study of major recurrent depression in the U.K. population. Am J 

Psychiatry 2010; 167: 949-57 
(b)

 

Gene ID Gene Name Immune Function of Gene 

LOC647167 encodes a protein 
similar to eukaryotic 
translation 
elongation factor 1 
alpha 2 (EF1-alpha) 

EF1-alpha binds and interacts with the HIV-1 Gag polyprotein, which play key functions at 
almost all stages of the viral life cycle. This interaction impairs in vitro viral RNA, a result 
consistent with a previously proposed model in which inhibition of translation by the 
accumulation of Gag serves to enhance viral spread by releasing viral RNA from polysomes, 

permitting the RNA to be packaged into nascent virions;117 severe acute respiratory syndrome 
coronavirus (SARS-CoV)  pathogenicity arises in part from the interaction off the viral C 
terminus (amino acids 251 to 422) of the N protein with human EF1-alpha which induces 
aggregation of EF1alpha, inhibiting protein translation and cytokinesis by blocking F-actin 
bundling;118 EF1-alpha contributes to apoptosis during viral infection, and in response to LPS 
and IL-1-beta, via interaction with interferon-induced protein with tetratricopeptide repeats-
1(IFIT1), which is rapidly synthesized in response to viral infection, functions as an inhibitor of 
translation by binding to the eukaryotic initiation factor-3, and consequently enhances 
resistance activity against viral invasion to cells;119 TNF-alpha down-regulates gene 
expression of EF1-alpha in endothelial cells;120 

VCAN versican In context of cervical cancer, versican reduces number of infiltrating CD8+ T cells;121 versican 
important for hyaluronan-dependent binding of moncytes to the extracellular matrix of lunch 
fibroblasts stimulated by the viral mimetic agent, polyinosine-polycytidylic acid. These findings 
implicate versican in ability of viral infections to exacerbate asthma and other lung 
disorders;122  Stimulation of mononuclear cells with GM-CSF increases the expression of 
versican mRNA as well as cytokine induction in these cells;123 

NLGN1 neuroligin 1 NLGN1 reported to modulate immune functioning in CNS following trauma via interactions 
with ERK1/2 and neurexin-1-beta;124 



LOC728275  Functionality of gene not established 

BBOX1 butyrobetaine 
(gamma), 2-
oxoglutarate 
dioxygenase 
(gamma-
butyrobetaine 
hydroxylase) 1 

BBOX is one of less than 1% of genes in cultured macrophages which demonstrates a 
change in gene expression in response to diesel exhaust particles (BBOX1 is 
downregulated);125 because gamma butyrobetaine hydroxylase catalyzes the formation of L-
carnitine from gamma-butyrobetaine, the last step in the L-carnitine biosynthetic pathway, one 
might predict host defense relevance given evidence that L-carnitine has stimulatory effects 
on a number of immune functions including neutrophil activity, delayed-type hypersensitivit 
and the conycentrations of immunoglobulins A and G (but not IgM);126 deficiency in L-carnitine 
activity/availability has been repeatedly associated with increased risk of encephalopathy in 
response to viral infection;127-129 L-carnitine shown to have anti-inflammatory properties in 
obese diabetic patients;130 

ATF3 activating 
transcription factor 3 

ATF3 functions as a "hub" of the cellular adaptive-response network that modulates 
inflammatory responses, cellular division and apoptosis;131,132 NF-kappaB, C/EBPdelta and 
ATF3 have been shown to form a regulatory circuit that discriminates between transient and 
persistent Toll-like receptor 4-induced signals, which is hypothesized to be a mechanism that 
enables the innate immune system to detect the duration of infection and to respond 
appropriately;133 ATF3 overexpression stimulates apoptotic cell death following Coxsackie 
virus B3 (CVB3) infection and augments CVB3 infection-induced eIF2alpha phosphorylation. 
However, ATF3 overexpression does not affect viral protein production, but rather promotes 
virus progeny release;134 via interaction with a cis-regulatory site on the IFN-gamma gene, 
ATF3 reduces NK cell activity against murine cytomegalovirus (MCMV), with a resultant 
increase in viral pathology. Correspondingly, ATF3null mice show exhibit decreased hepatic 
viral load and reduced liver histopathology upon challenge with MCMV;135 ATF3 is one of a 
small set of genes upregulated by adenovirus infection prior to commencement of viral gene 
expression;136,137 ATF3 is required for the interferon-induced serine/threonine protein kinase 
(PKR) to induce apoptosis of virally infected cells;138 ATF3 is also functionally important in 
mediating the pro-apoptotic effects of the proinflammatory p38 MAPK signaling pathway;139 
ATF3 production is stimulated by IL-12, IL-18 and IFN-alpha. Conflicting data suggest ATF3 
may enhance or repress the development of a Th1 cytokine profile in CD+ T cells;140,141 
Blocking ATF3 reduces IL-6 production in response to TLR stimulation;142.ATF3 is induced by, 
and induces TGF-beta and is essential for activation of TGF-beta target genes;143 ATF3 
induces STAT1;144  ATF3 enhances inflammatory responses to grafted islet cells promoting 
rejection;145 ATF3 is required for mast cell maturation and function;132 with heat shock 
transcription factor-1, ATF3 is necessary for ability of febrile temperatures to suppress IL-6 



production;146 ATF3acts as a transcriptional repressor of TLR4 signaling,147 leading to 

transcriptional repression of TNF-alpha production in macrophages;148 LPS-induced 
expression of matrix metalloproteinases in human monocytes is suppressed by IFN-gamma 
via superinduction of ATF-3;149 in a mouse model of human asthma, ATF3-deficiency 
significantly increases airway hyperresponsiveness, pulmonary eosinophilia, and enhances 
chemokine and Th2 cytokine responses in lung tissue and in lung-derived CD4(+) 
lymphocytes;150 ATF is increased by COX-2 activity;151 

C14orf49 aka NET53 and 
nesprin-3 

No specific immune and/or host defense functions reported 

LOC440742 hypothetical 
LOC440742 

Functionality of gene not established 

LOC338805 LOC338805 Functionality of gene not established 

ACYP2 acylphosphatase 2, 
muscle type 

No specific immune and/or host defense functions reported 

                                                                                                                                                                                                                    

Terracciono et al. Genome-wide association scan of trait depression. Biol Psychiatry 2010; 68: 811-17 
(b)

 

Gene ID Gene Name Immune Function of Gene 

RORA retinoic acid 
receptor-related 
orphan receptor 
alpha 

RORA, in combination with ROR-gamma, is essential for differentiation of naïve T cells in to 
Th17 phenotype, and RORA blockade prevents Th17 differentiation;152-154 knocking down 
RORA receptor activity in mice is associated with increased T cell IFN-gamma production 
following T-cell receptor stimulation, with increased TNF-alpha and IL-6 production upon 
activation of macrophages or mast cells, with increased IgG antibodies following 
immunization with a T-Cell dependent antigen and with increased CD8+ T cell cytotoxic 
activity against L. monocytogenes infected cells;155 RORA one of 22 genes upregulated by 
hepatitis B virus (HBV) infection and downregulated by treatment of HBV-infected cells with 
lamivudine;156 RORA has anti-inflammatory effect in experimental autoimmune 
uveoretinitis;157,158 allelic differences in RORA are associated with circulating levels of CRP in 
a meta-analysis of 15 GWAS studies;159 RORA gene expression profoundly inhibited by LPS 



in humans in vivo;160 in resting astrocytes RORA essential to maintain basal IL-6 levels, 
however following inflammatory stimulation, RORA suppresses astrocytic IL-6 production;161 
stable transfection experiments have demonstrated that overexpression of RORA specifically 
increases endogenous fibrinogen-beta mRNA levels, with immunoprecipitation studies 
showing that the human fibrinogen-beta gene is a direct target for RORA;162 acting via 
inhibition of NFκB, RORA suppresses TNF-alpha-induced expression of vascular cell 
adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) in human 
umbilical vein endothelial cells;163 

SLFN12L Schlafen family 
member 12-like 

No immune and/or host defense functions reported specifically for SLFN12; however, mice 
with a functional impairment in a related Schlafen family member gene (SLFN2) show 
enhanced susceptibility to bacterial and viral infection and diminished numbers of T cells and 
inflammatory monocytes that fail to proliferate after infection;164 Genes from the Schlafen 
family are differentially expressed during, and profoundly influence, thymocyte 
development;165 Schlafen family genes also show a strong association with circulating NK cell 
levels;166 

CDH18 Cadherin 18, type 2 No immune and/or host defense functions reported specifically for CHD18; however extensive 
data link other cadherins (especially E-cadherin [CDH1]) to host defense. For example, 
multiple pathogens (e.g. L monocytogenes, C.  botulinum H. pylori, anthrax, Enterotoxigenic 
Bacteroides, C.  rodentium) secrete factors that enhance virulence by interacting with E-
cahedrin to disrupt cellular junctions thus promoting entry of pathogen or toxins into host 
tissues;167-173 cleavage of E-cadherin  by calpains generated in response to TLR2 mediated 
Ca(2+) fluxes promote the transepithelial migration of PMNs within the lung during P 
aeruginosa infection;174 mechanisms that regulate the retention of tissue-resident memory T 
cells include transforming growth factor-β (TGF-β)-mediated induction of the E-cadherin 
receptor CD103 and downregulation of the chemokine receptor CCR7. These pathways 
enhance protection in internal organs, such as the nervous system, and in the barrier tissues-
-the mucosa and skin. Memory T cells that reside at these surfaces provide a first line of 
defense against subsequent infection, and defining the factors that regulate their development 
is critical to understanding organ-based immunity.175 

EIF3F eukaryotic 
translation initiation 
factor 3, subunit F 

EIF3F is a protein synthesis initiation factor that potently inhibits HIV-1 replication;176,177 EIF3F 
is a component of the nuclear interactome of the HIV-1 encoded regulatory protein Tat, which 
is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional 
regulation;5 EIF3F is required for initiation of HCV RNA translation in host cells and its 



induction is essential for the ability of iron to increase HCV expression;178-181 In cells infected 
with poliovirus, cellular mRNA fails to bind to ribosomes, and synthesis of the majority of 
cellular proteins ceases, a pathological process dependent upon viral 2Apro cleavage of 
EIF3F;182,183 EIF3F-induced deubiquitination essential for activation of Notch signaling 
pathway.184 The Notch pathway has numerous effects relevant to inflammation/host-pathogen 
defense,185-187 including 1) activation of IFN-gamma production in CD4+ T cells and IFN-alpha 
production in dendritic cells in response to HSV-2 infection;188; 2) promotion of Kaposi's 
sarcoma-associated herpesvirus latency (with increased cancer risk) via induction of RBP-Jκ, 
the master regulator of the Notch signaling pathway;189; 3) promotion of herpes virus transition 
from latency to activation status;190 3) promotion of Th17 activity and protective granuloma 
formation in response to M. tuberculosis infection via TLR9 signaling;191 4) modulation of 
either a pathogen promoting Th2 or disease-controlling Th1 CD4+ T cell response L. major 
infection;192 5) promotion of more competent, less pathogenic antiviral response to RSV 
infection;193 6) cooptation by gamma herpesviruses to establish lifelong infection;194 7) 
efficient induction of cytotoxic CD+ T cells and increased ability of dendritic cells to induce 
cytotoxic CD8 cells;195 8) regulation of IL-10 IFN-gamma-secreting CD4(+) T cells that 
suppress cytotoxic CD8+ cells;196 9) induction of Th2 type T cell responses at the expense of 
Th1 responses, in part by regulating the transcription factors T-bet and GATA-3;197 10) 
activation of microglia to produce proinflammatory cytokines in response to cerebral 
ischemia,198 11) induction of inflammatory mediators and apoptosis in context of renal 
ischemia/reperfusion injury;199 12) retention and survival of T cells in areas of arterial vessel 
wall inflammation;200 

FAM155A FAM155A family with 
sequence similarity 
155, member A 

Functionality of gene not established 

CDH13 Cadherin 13 (heart) SNP variants within CDH13 have been shown to interact with PTPN22 1858T to increase risk 
of developing autoimmunity (rheumatoid arthritis);201 for information on cadherins more 
generally see discussion under CDH18 above  

ITGB1 integrin, beta 1 Integrin beta-1 is a primary pathway whereby several viruses (e.g. Hantaan virus, 
cytomegalovirus) gain access to host cells, 202,203 and blockade of ITGB1 enhances host 
survival following infection with viruses that utilize ITGB1 as a means of cellular entry;202 
integrin beta 1 plays an important role in the ability of a number of bacterial species (e.g.  Y. 
pseudotuberculosis, Y. enterocolitica, S. pyogenes, B. burgdorferi) to gain entry into host 



epithelial/endothelial cells and thereby commence infection;204-207 ITGB1 contributes to host 
defense against S. pneumonia by allowing leukocytes direct access to lung bronchioles early 
in the infectious process;208 blockade of integrin beta-1 significantly reduces TNF-alpha 
production by monocytes, peritoneal and alveolar macrophages in response to heat-killed S. 
aureus;209 integrin beta-1contributes to development of non-T cell-dependent extrafollicular 
antigen-specific splenic plasmablasts important for protection against intracellular bacteria 
such as l pathogens such as Ehrlichia muris;210 human CMV infection may increase risk of 
cardiovascular disease by increasing endothelial cell proliferation, motility, and capillary tube 
formation in dependence upon binding to and signaling through the beta(1) and beta(3) 
integrins and the epidermal growth factor receptor, via their ability to activate the 
phosphatidylinositol 3-kinase and the mitogen-activated protein kinase signaling pathways;211 
human CMV ability to activate IFN-alpha signaling is partially dependent on viral interactions 
with integrin beta-1, whereas HCMV induced proinflammatory cytokine production is TLR2, 
but not ITGB1-dependent;211 binding interactions of bacteria intimin with epithelial integrin 
beta-1 are essential for infection of human colonic epithelium by Shiga toxin-producing 
Enterohemorrhagic E. coli;212 anopheline antiplatelet protein (AAPP) isolated from the saliva 
of Anopheles stephensi, a human malaria vector mosquito, exhibites a strong and specific 
inhibitory activity toward collagen-induced platelet aggregation (allowing blood feeding to 
proceed effectively) that depends in part upon integrin beta-1;213 integrin beta-1 required for 
long-term retention of memory CD4+ T cells in bone marrow following L. monocytogenes 
infection, although integrin beta-1 is not required for maintenance of long-term pathogen-
specific memory CD+ T cells;214 stimulation of the TLR4 by LPS activates PI3K/AKT signaling 
and promotes downstream beta-1 integrin function, which has been implicated in increased 
cancer cell adhesiveness and metastatic potential;215 

GRM8 glutamate receptor, 
metabotropic 8 

GRM8 (a type III mGlu) has been identified as a vulnerability gene for inflammatory bowel 
disease (Crohn’s) in more than one population sample,216 suggesting a link between GRM8 
and inflammatory functioning; GRM8 activation reduces hyperalgesia in response to 
inflammatory stimulation in animal models;217 in response to inflammatory signaling, 
polymorphonuclear leukocytes release glutamate that decreases human brain endothelial 
barrier function via reductions in phosphorylated vasodilator-stimulated phosphoprotein,218 
suggesting that type III mGlu signaling is involved in PMN migration in response to infection; 
type III mGlu stimulation mediates the excitotoxic effects of the proinflammatory mediators 
homocysteine and homocysteic acid;219 type III mGlu stimulation blocks TLR4-activated 
microglia inhibition of oligodendrocyte progenitor cells (which is driven by microglia TNF-
alpha/IL-6 production);220 



(a) = a study that finds genome-wide level significance for associations between allelic variants and depression; (b) = a 

study that failed to find genome-wide level significance for associations between allelic variants and depression
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